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What’s unicode-math?

\usepackage{unicode-math}
\setmathfont{Cambria Math}
\setmathfont{Cambria Math}[
range={\mathrel}, Colour=ForestGreen]

\setmathfont{Cambria Math}[
range={\mathopen,\mathclose}, Colour=blue]

\setmathfont{Cambria Math}[
range={\mathop,\mathscr}, Colour=red]

\[ F(s)=\mathscr{L}\,\bigl\{f(t)\bigr\}
= \int_0^∞ \mathup e^{-st}f(t)
\, \mathup d t \]

𝐹(𝑠) = ℒ ቄ𝑓(𝑡)ቅ = න
ஶ


eି௦௧𝑓(𝑡) d𝑡



Introduction
LATEX defaults

Input:

\[ fin = \mathit{fin} \]

Output:
fin = fin



Introduction
With unicode-math

Input:

\[ fin = \mathit{fin} \]

Output:
fin = fin



Introduction
Similarly:

Input:

\[ fin = \mathbf{fin} \]

Default:
fin = fin

With unicode-math:

fin = f in

Something needs fixing!
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Unicode mathematics

▶ I hope you know what Unicode is
▶ Thousands of mathematical glyphs (≈ 2500)
▶ Standard LATEX names thanks to Barbara Beeton
▶ As a non-mathematician, very fun to scroll through
seemingly endless tables like:

"2A00 "2A01 "2A02 "2A03 "2A04 "2A05 "2A06 "2A07

⨀ ⨁ ⨂ ⨃ ⨄ ⨅ ⨆ ⨇
"2A59 "2A60 "2A61 "2A62 "2A63 "2A64 "2A65 "2A66

⩙ ⩠ ⩡ ⩢ ⩣ ⩤ ⩥ ⩦



Extract from the symbols table

∤
∥
∦
∶
∷
∹
∺
∻
∼
∽
≁
≂
≃
≄
≅
≆
≇
≈
≉
≊
≋
≌
≍
≎
≏
≐
≑
≒
≓
≔
≕
≖
≗
≘
≙
≚
≛
≜
≝
≞
≟
≠
≡
≢
≣
≤
≥
≦
≧
≨



Symbols

▶ Access to all these symbols is nice
▶ All the symbols stuff is fine, ± a few naming issues
▶ Standardisation should be considered more rigorously



The ‘controversial’ stuff

▶ Alphabetic symbols are encoded individually:
"00057 "1D44A "1D416 "1D51A "1D4E6 "1D54E "1D5B6

W 𝑊 𝐖 𝔚 𝓦 𝕎 𝖶
▶ Strong rationale: different letter shapes have different
meanings in mathematics, and therefore should be
distinguishable in plain text

▶ I.e., symbols are expressible without changing fonts
▶ How does this translate to LATEX?
▶ (This is where I went wrong.)



Alphabetic symbols

ξ
ο
π
ρ
ς
σ
τ
υ
φ
χ
ψ
ω
ϐ
ϑ
ϕ
ϖ
Ϛ
ϛ
Ϝ
ϝ
Ϟ
ϟ
Ϡ
ϡ
ϰ
ϱ

ϵ

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻
𝐼
𝐽
𝐾
𝐿
𝑀
𝑁
𝑂



Alphabetic symbols

𝛣
𝛤
𝛥
𝛦
𝛧
𝛨
𝛩
𝛪
𝛫
𝛬
𝛭
𝛮
𝛯
𝛰
𝛱
𝛲
𝛳
𝛴
𝛵
𝛶
𝛷
𝛸
𝛹
𝛺

𝛼
𝛽
𝛾
𝛿
𝜀
𝜁
𝜂
𝜃
𝜄
𝜅
𝜆
𝜇
𝜈
𝜉
𝜊
𝜋
𝜌
𝜍
𝜎
𝜏



Alphabetic symbols

𝔞
𝔟
𝔠
𝔡
𝔢
𝔣
𝔤
𝔥
𝔦
𝔧
𝔨
𝔩
𝔪
𝔫
𝔬
𝔭
𝔮
𝔯
𝔰
𝔱
𝔲
𝔳
𝔴
𝔵
𝔶
𝔷

𝔸
𝔹
𝔻
𝔼
𝔽
𝔾
𝕀
𝕁
𝕂
𝕃
𝕄
𝕆
𝕊
𝕋
𝕌
𝕍
𝕎



What does LATEX do with maths alphabets?

Re = ρv cos(θ)
L

for 0 ≤ θ < π/2

H ∼ Hom(Z)

k = [kx, ky, kz]T k ∈ R3

What are the different fonts here?
▶ ρv etc — \mathnormal
▶ Re — \mathit
▶ cos — \mathrm (actually \operator@font)
▶ ‘for …’ — \textrm
▶ (·)T or (·)T — your choice
▶ Hom — \mathbf
▶ v — \mathbf— but should it be?
▶ R— \mathbb
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Maths alphabet fonts

▶ Many many alphabet styles used in mathematics
▶ TEX achieved this by switching fonts
▶ In Unicode mathematics, these are all in the one font
▶ Or are they?



What’s missing?

▶ Unicode mathematics has a few potential gaps
▶ To date, no provision for ‘text spacing’ (v maths)
▶ Although it’s up to the font designer, symbols in UM
fonts are kerned as single-letter variables.

▶ Ramifications:
▶ Upright roman not spaced for text (sin x)
▶ Italic roman not spaced for text (Re)
▶ Bold roman not spaced for text (Hom)

Unfortunately, unicode-math has been calling these
\mathrm, \mathit, and \mathbf for many years.



What’s missing?

▶ Unicode mathematics has a few potential gaps
▶ To date, no provision for ‘text spacing’ (v maths)
▶ Although it’s up to the font designer, symbols in UM
fonts are kerned as single-letter variables.

▶ Ramifications:
▶ Upright roman not spaced for text (sin x)
▶ Italic roman not spaced for text (Re)
▶ Bold roman not spaced for text (Hom)

Unfortunately, unicode-math has been calling these
\mathrm, \mathit, and \mathbf for many years.



This gives a good excuse for a talk

▶ Historical/interesting examples of mathematics
▶ How unicode-math works, TEX-nically
▶ Fixing the alphabet problem



Overview of Unicode Mathematics

Historical and current examples
Sidenote: symbols

TEX’s methods



\mathrm with maths spacing
Historical example

 on June 27, 2015http://rstl.royalsocietypublishing.org/Downloaded from 

Osborne Reynolds. “An Experimental Investigation of the Circumstances Which
Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of
Resistance in Parallel Channels”. In: Phil. Trans. R. Soc. Lond. 174 (1883), pp. 935–982.
doi: 10.1098/rstl.1883.0029

http://dx.doi.org/10.1098/rstl.1883.0029


\mathrm with maths spacing
Modern example

116 7 Delay-Adaptive Full-State Predictor Feedback

and hence,

V (0)≤
(

Dλmax(P)+ 2bDs2 + 2bDs1 +
b
γ

)
ϒ (0) . (7.57)

Denoting

R =
1 + r2

λmin(P)
+

r1

b
+

γD
b

, (7.58)

ρ = λmax(P)+ 2bs2 + 2bs1 +
b

γD
, (7.59)

we complete the proof of the stability estimate (7.19).
Finally, to prove the regulation result, we will use (7.42) and Barbalat’s lemma.

However, we first discuss the boundedness of the relevant signals. By integrating
(7.44) from t = 0 to t = ∞, and by noting that N(t) is uniformly bounded, it fol-
lows that X(t), ∥w(t)∥, and D̂(t) are uniformly bounded in time. Using (7.45), we
also get the uniform boundedness of ∥u(t)∥ in time. With the Cauchy–Schwartz
inequality, from (7.12) we get the uniform boundedness of U(t) for t ≥ 0. From
(7.5), we get the uniform boundedness of u(0,t) for t ≥ D. Using (7.2), we get the
uniform boundedness of d|X(t)|2/dt for t ≥ D. From (7.42), it follows that X(t) is
square integrable in time. From this fact, along with the uniform boundedness of
d|X(t)|2/dt for t ≥ D, by Barbalat’s lemma we get that X(t)→ 0 as t → ∞.

What remains is to prove the regulation of U(t). From (7.42), it follows that
∥w(t)∥ is square integrable in time. Using (7.45), we get that ∥u(t)∥ is also square
integrable in time. With the Cauchy–Schwartz inequality, from (7.12) we get that
U(t) is also square integrable. To complete the proof of regulation of U(t) by
Barbalat’s lemma, all that remains to show is that dU(t)2/dt is uniformly bounded.
Toward this end, we calculate

d
dt

U(t)2 = 2U(t)K
[

eAD̂(t)Ẋ(t)+ ˙̂D(t)G1(t)+
D̂(t)

D
G2(t)

]
, (7.60)

where

G1(t) = AeAD̂(t)X(t)+
∫ 1

0

(
I + AD̂(t)(1− y)

)
g(y,t)dy , (7.61)

G2(t) = BU(t)−BeAD̂(t)u(0,t)+
∫ 1

0
AD̂(t)g(y,t)dy , (7.62)

and
g(y,t) = eAD̂(t)(1−y)Bu(y,t) . (7.63)

The signal ˙̂D(t) is uniformly bounded over t ≥ 0 according to (7.13)–(7.15). By also
using the uniform boundedness of X(t), Ẋ(t),∥u(t)∥,U(t) over t ≥ 0, and of u(0,t)
over t ≥ D, we get the uniform boundedness of dU(t)2/dt over t ≥ D. Then, by
Barbalat’s lemma, it follows that U(t)→ 0 as t → ∞.

Miroslav Krstić. Delay Compensation for Nonlinear, Adaptive, and PDE Systems.
Birkhäuser Boston, 2009. doi: 10.1007/978-0-8176-4877-0

Also note
d

dt
vs

d
dt

http://dx.doi.org/10.1007/978-0-8176-4877-0


e and e

9.2 Control Design 139

the components of the update law τθ (t) chosen as

τθ i(t) =
1

N(t)

(
2X̃(t)T P(θ̂)

b
−

∫ 1

0
(1 + x)w(x,t)K(θ̂ )eA(θ̂)D̂(t)xdx

)
εi(t) (9.37)

for i = 1,2, . . . , p, the normalization signal is

N(t) = 1 + X̃(t)T P(θ̂)X̃(t)+ b
∫ 1

0
(1 + x)w(x,t)2dx, (9.38)

and the error signals driving the update laws are

εD(t) = (A + BK)(θ̂)X̃(t)+ B(θ̂)w(0,t), (9.39)

εi(t) = AiX(t)+ Biu(0,t) , 1≤ i≤ p . (9.40)

The matrix P is defined in Assumption 9.2. The standard projector operators are
given by

Proj[0,D̄]{τD} = τD

⎧
⎨

⎩

0, D̂ = 0 and τD < 0,
0, D̂ = D̄ and τD > 0,
1, otherwise

(9.41)

for the scalar (delay case) and by

ProjΠ{τθ} = τθ

⎧
⎪⎨

⎪⎩

I, θ̂ ∈ Π̊ or ∇θ̂ PT τ ≤ 0,

I− ∇θ̂ P∇θ PT

∇θ̂ PT ∇θ P
, θ̂ ∈ ∂Π and ∇θ̂ PT τ > 0,

(9.42)

for the vector (plant parameter) case.
The transformed state of the actuator is

w(x,t) = e(x,t)− D̂(t)
∫ x

0
K(θ̂ )eA(θ̂)D̂(t)(x−y)B(θ̂ )e(y,t)dy

− K(θ̂ )eA(θ̂)D̂(t)xX̃(t), (9.43)

and the constant b is chosen such that

b≥ 4 sup
θ̂∈Π

|PB|2(θ̂ )
D̄
λ . (9.44)

Theorem 9.1. Let Assumptions 9.1–9.4 hold and consider the closed-loop system
consisting of (9.24)–(9.27), the control law (9.33), and the update laws defined
by (9.34)–(9.44). There exists γ∗ > 0 such that for any γ ∈ [0,γ∗[, there exist positive
constants R and ρ (independent of the initial conditions) such that for all initial con-
ditions satisfying (X0,u0,D̂0,θ 0) ∈Rn×L2(0,1)×]0,D̄]×Π , the following holds:

ϒ (t)≤ R
(

eρϒ (0)−1
)

, ∀t ≥ 0 , (9.45)
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356 C.L. Vaughan, M.J. O’Malley / Gait and Posture 21 (2005) 350–362

One of Alexander’s most highly cited articles was his dy-
namic similarity hypothesis [31]. He noted that the galloping
movements of cats and rhinoceroses are remarkably similar
even though the animals are so different [22], and postu-
lated five dynamic similarity criteria: (1) each leg has the
same phase relationship; (2) corresponding feet have equal
duty factors (% of cycle in ground contact); (3) relative (i.e.
dimensionless) stride lengths are equal; (4) forces on corre-
sponding feet are equal multiples of body weight; and (5)
power outputs are proportional to body weight times speed.
He hypothesised, and provided the necessary experimental
evidence to demonstrate, that animals meet these five cri-
teria when they travel at speeds that translate to equal val-
ues of Fr [31]. Evidence in support of criterion 3 has been
presented in Fig. 7a, while the data for criterion 2 may be
seen in Fig. 7b. At Fr values below 2, the phase differences
lie between 0.4 and 0.5, and the animals utilise symmetri-
cal gaits such as walking, trotting and pacing. There is an
abrupt transition at Fr values between 2 and 3, and above
3 the animals use asymmetrical gaits such as cantering and
galloping. Although Alexander developed the dynamic sim-
ilarity hypothesis for quadrupedal animals [31], it may also
be applied to bipedal gait [33].

3. Part II: selected applications

3.1. Effects of size

As indicated above in Section 2.1, D’Arcy Thompson
used the Froude number to compare the walking speeds
of different sized characters in Gulliver’s Travels. This is
clearly one of the major benefits of the Froude number, with
the primary application being in the study of children’s gait
[1,2,32,41–44]. Alexander [32] showed that when dimen-
sionless stride length was plotted as a function of dimen-
sionless speed β where

β = v/(gL)1/2 = (Fr)1/2 (3)

then data for children aged over 4 years were the same
as adults. He used this empirical relationship to predict
the walking speeds for two small hominids (with estimated
heights of 1.19 and 1.39m) who left their footprints in vol-
canic ash at Laetoli in East Africa 3.7 million years ago [1].
Alexander estimated the speeds to be 0.64 and 0.75m/s, re-
spectively, which corresponds to modern humans walking
in small towns [32]. Minetti and his colleagues have stud-
ied two other groups that have short statures: Pygmies from
West Africa [45,46]; and pituitary dwarfs suffering from
growth hormone deficiency [46,47]. This latter group will be
described later in Section 3.3 when the effects of pathology
and treatment are considered.
Minetti et al. [45] simultaneously measured oxygen con-

sumption and kinematics for Pygmy adults (height 1.53 ±
0.04m) and Caucasian adults (height 1.77± 0.04m) walk-
ing and running on a treadmill. They showed that for walk-

ing, the metabolic power (oxygen consumption per kilogram
per minute) was the same for both groups when expressed
as a function of Fr. For running, however, they discovered
that the Pygmies had a lower metabolic cost, suggesting that
the two groups probably did not run in a dynamically sim-
ilar fashion. Saibene and Minetti [46] combined the walk-
ing data for children aged 1–12 years [48] with that of the
Pygmy adults and plotted the recovery of mechanical en-
ergy (expressed as a percentage) as a function of Fr. They
demonstrated that, despite the size differences in the sub-
jects, all the data could be fitted by a single curve with a peak
energy recovery value of 65% at the same Froude number
(Fr = 0.25), which represents the optimal walking speed for
all humans.
When the fundamental gait parameters (step length, step

frequency, single limb stance time, and step width) are ren-
dered dimensionless according to the method advocated by
Hof [49], these parameters change during the first 6 years
of a child’s life [1,41,42]. Thereafter, they are invariant,
with the values for 7 year olds, teenagers and adults be-
ing the same [41]. This finding has been referred to by
Vaughan [1] as a risk aversion hypothesis: when a child
takes its first few halting steps, its biomechanical strategy
is to minimise the risk of falling. Vaughan et al. [50] have
argued that when step length and step frequency are scaled
non-dimensionally, they account for increases in a child’s
physical size (i.e. biomechanical changes) and any residual
changes in the fundamental locomotor parameters reveal on-
togentic development. They posited that dimensionless ve-
locity β (Eq. (3)), which is the product of dimensionless step
length and frequency, serves as a measure of neural devel-
opment. All three parameters increased from the age of 18
months and reached maturity (i.e. adult values) between 50
and 90 months (Fig. 8a). Based on a study of 200 children,
the findings of Vaughan et al. [50] lend support to a theory
that posits a neuromaturation growth curve:

β(t) = 0.45(1− e−0.05t) (4)

where t is the child’s age in months, 0.45 is the adult value
for β, and 0.05 is the growth coefficient (Fig. 8b).

3.2. Effects of gravity

Five years before Neil Armstrong took his first historic
steps on the moon in 1969, scientists were already intrigued
by the problems that could face humans walking in a sub-
gravity environment [51]. The Apollo missions of the early
1970s then provided the impetus for further exploration of
the mechanics of locomotion when the gravitational ac-
celeration has a magnitude that is either smaller or greater
than that on Earth. Since gravity appears explicitly in the
Froude number equation, where Fr is equal to v2/gL, it
lends itself very well to the purpose of testing the dynamic
similarity hypothesis for different values of g [46,52–57]. If
we compare the same subject (i.e. the leg length L is con-

Christopher L. Vaughan and Mark J. O’Malley. “Froude and the contribution of naval
architecture to our understanding of bipedal locomotion”. In: Gait & Posture 21.3
(2005), pp. 350–362. doi: 10.1016/j.gaitpost.2004.01.011

http://dx.doi.org/10.1016/j.gaitpost.2004.01.011
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0.04m) and Caucasian adults (height 1.77± 0.04m) walk-
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ilar fashion. Saibene and Minetti [46] combined the walk-
ing data for children aged 1–12 years [48] with that of the
Pygmy adults and plotted the recovery of mechanical en-
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demonstrated that, despite the size differences in the sub-
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dered dimensionless according to the method advocated by
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months and reached maturity (i.e. adult values) between 50
and 90 months (Fig. 8a). Based on a study of 200 children,
the findings of Vaughan et al. [50] lend support to a theory
that posits a neuromaturation growth curve:

β(t) = 0.45(1− e−0.05t) (4)

where t is the child’s age in months, 0.45 is the adult value
for β, and 0.05 is the growth coefficient (Fig. 8b).

3.2. Effects of gravity

Five years before Neil Armstrong took his first historic
steps on the moon in 1969, scientists were already intrigued
by the problems that could face humans walking in a sub-
gravity environment [51]. The Apollo missions of the early
1970s then provided the impetus for further exploration of
the mechanics of locomotion when the gravitational ac-
celeration has a magnitude that is either smaller or greater
than that on Earth. Since gravity appears explicitly in the
Froude number equation, where Fr is equal to v2/gL, it
lends itself very well to the purpose of testing the dynamic
similarity hypothesis for different values of g [46,52–57]. If
we compare the same subject (i.e. the leg length L is con-

Christopher L. Vaughan and Mark J. O’Malley. “Froude and the contribution of naval
architecture to our understanding of bipedal locomotion”. In: Gait & Posture 21.3
(2005), pp. 350–362. doi: 10.1016/j.gaitpost.2004.01.011

http://dx.doi.org/10.1016/j.gaitpost.2004.01.011


\mathrm with text spacing

der that is rotating in a fluid of infinite extent that is otherwise at rest.
Compare this result with that for a line vortex of strength G ¼ 2pR2

i oi
in an inviscid fluid that is at rest at infinity.

7.9 Obtain the velocity distribution for the modified Stokes second pro-
blem consisting of a fluid that is contained between two infinite
parallel surfaces separated by a distance h. The upper surface is held
fixed,while the lower surface oscillates in its own plane with velocity
U cos nt.

7.10 The velocity profile in a fluid between two parallel surfaces due to an
oscillating pressure gradient was shown in Eq. (7.6) to be

uðy; tÞ ¼ Re i
Px

rn
1$

cosh ð1þ iÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

ðn=2n
p

y
" #

cosh ð1þ iÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
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p

a
" #

( )
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 !

FIGURE11 Fluid enclosed by vertical stationary and horizontal moving surfaces.
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Dx ¼
Z dt

0
u½xðtÞ; yðtÞ% dt

Since the values of x and ymust be close to zero for short times such as dt, the
velocity componentumaybeexpanded in aTaylor series about the point (0,0)
to give

Dx ¼
Z dt

0
uð0; 0Þ þ xðtÞ @u

@x
ð0; 0Þ þ yðtÞ @u

@y
ð0; 0Þ þ ' ' '

! "

dt

where the dots represents terms that are smaller than those presented and
that will eventually vanish as the limit of dt! 0 is taken. Integrating the
leading term explicitly gives

Dx ¼ uð0; 0Þdt þ
Z dt

0
xðtÞ @u

@x
ð0; 0Þ þ yðtÞ @u

@y
ð0; 0Þ þ ' ' '

! "

dt

¼ uð0; 0Þdt þ ' ' '

similarly

Dy ¼ vð0; 0Þdt þ ' ' '

As well as moving bodily, the £uid element will rotate and will be dis-
torted as indicated by the corners, which are labeled A0;B0;C 0, and D0 to
represent the element at time t¼ dt. The rotation of the side CD to its new
position C 0D0 is indicated by the angle da,where a is positive when measured
counterclockwise. Similarly, the rotation of the side BC to its new position
B0C 0 is indicated by the angle db, where b is positive when measured clock-
wise. Expressions for da and db in terms of the velocity components may be
obtained as follows:
From the geometry of the element as it appears at time t ¼ dt,

da ¼ tan(1 y component of D0C 0

x component of D0C 0

# $

¼ tan(1 ½vð12dx;(
1
2dyÞ dt þ ' ' '% ( ½vð(1

2dx;(
1
2dyÞ dt þ ' ' '%

dx þ ' ' '

% &

where v is evaluated ¢rst at the point D, whose coordinates are ð12dx;(
1
2dyÞ,

and secondly at the point C, whose coordinates are ð(1
2dx;(

1
2dyÞ. The

x component of the side D0C 0 will be only slightly di¡erent from dx, and
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I. G. Currie. Fundamental Mechanics of Fluids. Third Edition. Marcel Dekker, 2003
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Horace Lamb. Hydrodynamics. Fourth Edition. Cambridge University Press, 1916
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§2.4 General techniques for calculating forces between magnets

A general technique for finding the forces between two magnets is simple to
describe. The first magnet creates a magnetic field in the region of the second
magnet; the force is calculated due to the interaction of the first magnet’s
field and the internal field of the second magnet.

There are two methods that will be outlined here for calculating the
magnetic field of a permanent magnet, known as the charge and current
models. Respectively, these consist of modelling the magnets as having two
surfaces of ‘magnetic charge’, or modelling the magnet as being circumscribed
of an equivalent surface current density. In the expressions to follow, the
magnetisation of each magnet has been assumed to be homogeneous and
constant, which is usually a reasonable assumption for modern rare earth
magnetic material; hence terms involving r · M and r ⇥ M equate to zero
and have been omitted from Eqs 2.11 and 2.12.

In the first step, the integration takes place over the surface of the first
magnet S1, which is written for the charge model as

(2.11)B1(x2) =
µ0

4p

I

S1

⇥
M1 · n̂s1

⇤ x2 � x1

|x2 � x1|3
ds1 ,

and for the current model as

(2.12)B1(x2) =
µ0

4p

I

S1

h
M1 ⇥ n̂s0

1

i
⇥ x2 � x1

|x2 � x1|3
ds0

1 ,

where n̂ is the normal vector from the differential surface of integration ds.
In the second step, the integration of the function of the magnetic field of

the first magnet takes place over the surface of the second magnet S2, and
the integral for the charge model is

(2.13)F =
I

S2

⇥
M2 · n̂s2

⇤
B1(x2) ds2 ,

and for the current model is

(2.14)F =
I

S2

h
M2 ⇥ n̂s0

2

i
⇥ B1(x2) ds0

2 .

Equations 2.13 and 2.14 are general recipes for deriving equations to
calculate the forces between permanent magnets of arbitrary geometry, and
a similar formulation allows for the modelling of electromagnetic coils as
well. In certain circumstances, the geometry of the permanent magnet can

William S P Robertson. “Modelling and design of magnetic levitation systems for
vibration isolation”. PhD thesis. The University of Adelaide, 2013
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Saunders Mac Lane. Categories for the Working Mathematician. 2nd ed. Springer, 1998
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Miroslav Krstić, Ioannis Kanellakopoulos, and Petar Kokotović. Nonlinear and Adaptive
Control Design. Ed. by Simon Haykin. John Wiley and Sons, 1995. isbn: 0-471-12732-9
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along the solutions of (F.2), where

l(x) =
n

∑
j=1

(
x j−β j+1(x j+1)

)2 +

(
n

∑
j=1

(
x j−β j+1(x j+1)

)
)2

(G.32)

is a positive-definite, radially unbounded function. Furthermore, the control law
(G.30) remains globally asymptotically stabilizing at the origin in the presence of
input-unmodeled dynamics of the form

a(I +P) , (G.33)

where a ≥ 1/2 is a constant, Pu is the output of any strictly passive nonlinear
system3 with u as its input, and I denotes the identity operator.

Proof. It follows from Theorem 2.8, Theorem 2.17, and Corollary 2.18 in [109].
⊓$

The main result of this section was a control algorithm that eliminates the
requirement to solve the ODEs (F.15) and reduces the problem to calculating only
the integrals (G.23). In the next two sections we present algorithms that eliminate
even the need to calculate the integrals (G.23) for two subclasses of DECI strict-
feedforward systems.

Linearizable Feedforward Systems of Type I

Consider the class of strict-feedforward systems given by

ẋ1 = x2 +
n−1

∑
j=2

π j(x j)x j+1 + πn(xn)u , (G.34)

ẋi = xi+1 , i = 2, . . . ,n−1 , (G.35)

ẋn = u , (G.36)

where π j(0) = 0. Any system in this class is DECI.

Theorem G.5. The diffeomorphic transformation

y1 = x1−
n

∑
j=2

∫ x j

0
π j(s)ds , (G.37)

yi = xi , i = 2, . . . ,n , (G.38)

converts the strict-feedforward system (G.34)–(G.36) into the chain of integrators
(G.8)–(G.9). The feedback law

3 With possibly nonzero initial conditions.
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(dM)�µ⌫ = 0, (�, µ, ⌫ = 0,1,2,3).(3.2.5)

Taken together, (3.2.1) and (3.2.5) are the electromagnetic equations for Fµ⌫ corresponding to �L .
We remark for future use that it can be easily checked that equation (3.2.1) is equivalent to any of

D�Fµ⌫ +D⌫F�µ +DµF⌫� = 0, (�, µ, ⌫ = 0,1,2,3),(3.2.6a) ∇�Fµ⌫ +∇⌫F�µ +∇µF⌫� = 0, (�, µ, ⌫ = 0,1,2,3),(3.2.6b)

Dµ
�F#µ⌫ = 0, (⌫ = 0,1,2,3),(3.2.6c) ∇µ
�Fµ⌫ = 0, (⌫ = 0,1,2,3),(3.2.6d)

and that equation (3.2.5) is equivalent to any of

D�Mµ⌫ +D⌫M�µ +DµM⌫� = 0, (�, µ, ⌫ = 0,1,2,3),(3.2.7a) ∇�Mµ⌫ +∇⌫M�µ +∇µM⌫� = 0, (�, µ, ⌫ = 0,1,2,3),(3.2.7b)

Dµ
�M#µ⌫ = 0, (⌫ = 0,1,2,3),(3.2.7c) ∇µ
�Mµ⌫ = 0, (⌫ = 0,1,2,3).(3.2.7d)

In the above formulas, � denotes the Hodge duality operator corresponding to the Minkowski metric mµ⌫ ; this operator is defined
in Section 2.6.

We state as a lemma the following identities, which will be used for various computations. We leave the proof as a simple exercise
for the reader.

Lemma 3-1. (Identities) The following identities hold:

@�det g�
@gµ⌫

= �det g�(g−1)µ⌫ ,(3.2.8a)

@(g−1)�
gµ⌫

= −(g−1)µ(g−1)�⌫ ,(3.2.8b)

✓2(2) = �detF ��det g�−1,(3.2.8c) (g−1)�Fµ
�F⌫� = ✓(2)gµ⌫ ,(3.2.8d)
@✓(1)
@gµ⌫

= −g�F#µF#⌫�,(3.2.8e)

@✓(2)
@gµ⌫

= −1
2

✓(2)(g−1)µ⌫ ,(3.2.8f)

@✓(1)
@Fµ⌫

= 2F#µ⌫ ,(3.2.8g)

@✓(2)
@Fµ⌫

= �F#µ⌫
,(3.2.8h)

@F#µ⌫

@F�
= (g−1)µ(g−1)⌫� − (g−1)µ�(g−1)⌫,(3.2.8i)

@�F#µ⌫

@F�
= ✏#µ⌫�,(3.2.8j)

Dµ✓(1) = F#�DµF�, (µ = 0,1,2,3),(3.2.8k)

Dµ✓(2) = 1

2

�F#�DµF�, (µ = 0,1,2,3).(3.2.8l)

⇤

Jared Speck. “The global stability of the Minkowski spacetime solution to the
Einstein-nonlinear system in wave coordinates”. In: Analysis & PDE 7.4 (2014),

pp. 771–901. doi: 10.2140/apde.2014.7.771

Courtesy http://math.stackexchange.com/a/1250067/2961

http://dx.doi.org/10.2140/apde.2014.7.771
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Setting up maths in plain (Xe/Lua)TEX

Define some fonts:
\font\Urm = "[texgyrepagella-regular.otf]:color=AA00AA"
\font\Ubf = "[texgyrepagella-bold.otf] :color=0000FF"
\font\Uit = "[texgyrepagella-italic.otf] :color=00AA00"
\font\Umm = "[texgyrepagella-math.otf] :color=FF0000"

Which produces: rm bf it mm

(Remember: red is the maths font in particular)



Now set up some maths families

\newfam\Urmfam
\newfam\Ubffam
\newfam\Uitfam

\textfont\Urmfam\Urm
\textfont\Ubffam\Ubf
\textfont\Uitfam\Uit
\textfont1\mm

(\textfont1 just means default symbols)



Switching to these fonts?

$$
a + b + c \quad α + β + γ

$$
$$
{\fam\Urmfam abcαβγ} \quad
{\fam\Uitfam abcαβγ} \quad
{\fam\Ubffam abcαβγ}
$$

a + b + c + +

abc abcαβγ abc

(What’s going on with symbols?)



Remap to Unicode

\Umathcode`\a = 7 1 "1D44E\relax
\Umathcode`\b = 7 1 "1D44F\relax
\Umathcode`\c = 7 1 "1D450\relax
\Umathcode`\α = 7 1 "1D6FC\relax
\Umathcode`\β = 7 1 "1D6FD\relax
\Umathcode`\γ = 7 1 "1D6FE\relax

𝑎 + 𝑏 + 𝑐 𝛼 + 𝛽 + 𝛾

("1D44E is Unicode Plane 1 mathematical small a)



Remap to elsewhere in Unicode

\Umathcode`\a = 7 1 "1D482\relax
\Umathcode`\b = 7 1 "1D483\relax
\Umathcode`\c = 7 1 "1D484\relax
\Umathcode`\α = 7 1 "1D736\relax
\Umathcode`\β = 7 1 "1D737\relax
\Umathcode`\γ = 7 1 "1D738\relax

𝒂 + 𝒃 + 𝒄 𝜶 + 𝜷 + 𝜸

("1D44E is Unicode Plane 1 mathematical small a)



Rundown so far

▶ Maths is not like text
▶ In text, an input char, say ‘ascii a’ (U+97) is represented
at the same code-point in the current font

▶ In maths, an input char is (luckily!) mapped to
whatever code-point we like!

▶ In this case, input char U+97 → font glyph U+1D44E



But what about alphabets?
Traditional TEX

This is very different than traditional TEX maths where we
have a number of maths fonts with different shapes in ascii
slots:

▶ e.g., input char A65 → A65 maths font (\mathnormal)
▶ e.g., input char A65 → A65 bold font (\mathbf)
▶ e.g., input char A65 → A65 cal font (\mathcal)



But what about alphabets?
Unicode mathematics

Now we need to map within the same font:
▶ e.g., input char A65 → A1D434 maths font (\mathnormal)
▶ e.g., input char A65 → A1D400 maths font (\mathbf)
▶ e.g., input char A65 → A1D49C maths font (\mathcal)



But what about alphabets?
Unicode mathematics

The naive approach (up until now):
▶ Ignore classical TEX maths; Unicode is the future!
▶ \mathcal maps to calligraphic range.
▶ \mathfrak maps to fraktur range.
▶ \mathbfmaps to bold upright symbols. (Maybe okay?)
▶ \mathitmaps to math italic symbols. (Not okay!)

Impedance mismatch between what TEX users use and
what Unicode mathematics provides.



Kerning

The big problem here:
▶ \mathbf traditionally uses a text font (why not?)
▶ \mathit traditionally uses a text font (needed!)
▶ \mathtt traditionally uses a text font
▶ \mathsf traditionally uses a text font



Where is \mathbf used?

▶ It’s not just one thing!
▶ Single symbols with math-like spacing
▶ Multi-letter names with text-like spacing

Unicode only provides for the first.
LATEX sort of only provides the second.



What about \mathit?

LATEX defines:
▶ \mathnormal— italic symbols with maths spacing
▶ \textit— italic letters with text spacing and text
behaviour

▶ \mathit— italic w. text spacing and maths behaviour
These could all be separate fonts. Unicode only provides
for the \mathnormal case.



Similarly \mathrm

LATEX defines upright roman letters:
▶ \textrm— with text spacing and text behaviour
▶ \mathrm— with text spacing and maths behaviour

These could all be separate fonts. Unicode only provides
for ???.
Up to the font designer.



This is LATEX2ε+amsmath

▶ \mathnormal
▶ \mathit
▶ \mathrm
▶ \mathbf
▶ \mathsf
▶ \mathtt
▶ \mathcal
▶ \mathfrak

\boldsymbol / bm allowed for bold in many cases too.



Categories of alphabets in Unicode

Unambiguous:
▶ bb, bbit, scr, bfscr, cal, bfcal, frak, bffrak

Ambiguous:
▶ rm, it, tt, bfup, bfit, sfup, sfit, bfsfup, bfsfit, bfsf

I called these \mathrm, \mathit, etc., and that was …



…a poor decision

As discussed:
▶ ‘\mathit’ ALWAYS (in practice) used for Re, Fr , …
So unicode-math’s definition for \mathit is no good.

▶ ‘bf’ might be for a × b or Hom(·)
So UM’s definition for \mathbf (and \mathrm,
\mathsf, \mathtt) potentially wrong.

▶ So what to do?



Switching to symbol ranges

▶ ALL mapping ranges are defined with new commands
\symbb, \symcal, \symbf, etc. etc.

▶ ALL traditional LATEX font switches are given alias
names \mathtextrm, \mathtextit, \mathtextbf, etc.

▶ Unambiguous ranges: \mathfrak := \symfrak
▶ By default: \mathbf := \mathtextbf
(i.e., as per LATEX2ε)

▶ Package options (mathbf=sym) to switch



Tell me about these symbol ranges

▶ \symliteral switches to ‘literal’ input syntax.
▶ \symbf follows TEX or ‘ISO’ conventions with upright
latin and italic greek letters.

▶ \symsf switches to upright or italic sans serif according
to a package option.



Tell me about these symbol ranges
Continued

▶ \symbfit, \symbfup, \symsfit, \symsfup can be used
where needed.

▶ Why is \symtt not aliased to \mathtt?
Few slots; if you want your code font and your
typewriter maths font to match, you’re better off
sticking with traditional \mathtt.

▶ There is no contextual math style yet;
\symbf{\symsf{X}} does NOT produce \symbfsf{X}.
It probably should.



Undoing the mapping for
\DeclareMathAlphabet

▶ Latest version of unicode-math ‘fixes’
\DeclareMathAlphabet.

▶ This is what allows the distinction between \mathXYZ
and \symXYZ.

▶ Necessary for using character shapes outside of
Unicode.

▶ Requires some care hacking the NFSS.
▶ ‘User-level’ interface \setmathfontface.



\documentclass{article}
\usepackage{unicode-math}
\setmathfont{texgyrepagella-math.otf}[Scale=0.85]
\setmathfontface\mathchor{texgyrechorus-mediumitalic.otf}
\setoperatorfont\mathchor
\begin{document}
\[

(\sin x)^2 + (\cos x)^2 = 1
\]
\end{document}
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13.7.B. EXERCISE. SupposeF is a finite rank locally free sheaf, and G is a quasico-
herent sheaf. Describe an isomorphism Hom(F ,G ) ∼= F∨ ⊗ G . (This holds more
generally if G is an O-module, but we won’t use that, so you may as well prove
the simpler result given in this exercise.)

13.7.C. EXERCISE. Suppose

(13.7.1.1) 0→ F → G →H → 0

is an exact sequence of quasicoherent sheaves on a scheme X, whereH is a locally
free quasicoherent sheaf, and suppose E is a quasicoherent sheaf. By left-exactness
of Hom (Exercise 2.5.H),

0→ Hom(H ,E )→ Hom(G ,E )→ Hom(F ,E )→ 0

is exact except possibly on the right. Show that it is also exact on the right. (Hint:

this is local, so you can assume that X is affine, say SpecA, and H = Ã⊕n, so
(13.7.1.1) can be written as 0 → M → N → A⊕n → 0. Show that this exact
sequence splits, so we can write N = M ⊕ A⊕n in a way that respects the exact
sequence.) In particular, if F , G , H , and OX are all coherent, and H is locally
free, then we have an exact sequence of coherent sheaves

0→H ∨ → G ∨ → F∨ → 0.

13.7.D. EXERCISE (THE SUPPORT OF A FINITE TYPE QUASICOHERENT SHEAF IS
CLOSED). Suppose F is a sheaf of abelian groups. Recall Definition 2.4.2 of
the support of a section s ofF , and definition (cf. Exercise 2.6.F(b)) of the support of
F . (Support is a stalk-local notion, and hence behaves well with respect to restric-
tion to open sets, or to stalks. Warning: Support is where the germ(s) are nonzero,
not where the value(s) are nonzero.) Show that the support of a finite type qua-
sicoherent sheaf on a scheme X is a closed subset. (Hint: Reduce to the case X
affine. Choose a finite set of generators of the corresponding module.) Show that
the support of a quasicoherent sheaf need not be closed. (Hint: If A = C[t], then
C[t]/(t−a) is anA-module supported at a. Consider⊕a∈CC[t]/(t−a). Be careful:
this example won’t work if ⊕ is replaced by

∏
.)

13.7.2. Remark. In particular, if X is a locally Noetherian scheme, the sheaf of
nilpotents (Exercise 13.3.G) is coherent and hence finite type, and thus has closed
support. This makes precise the statement promised in §4.2.1, that in good (Noe-
therian) situations, the fuzz on a scheme is supported on a closed subset. Also, as
promised in Remark 5.2.2, if X is a locally Noetherian scheme, the reduced locus
forms an open subset. (We already knew all of this as of Remark 5.5.5, but now we
know it twice as well.)

We next come to a geometric interpretation of Nakayama’s Lemma, which is
whyNakayama’s Lemma should be considered a geometric fact (with an algebraic
proof).

13.7.E. USEFUL EXERCISE: GEOMETRIC NAKAYAMA (GENERATORS OF A FIBER
GENERATE A FINITE TYPE QUASICOHERENT SHEAF NEARBY). Suppose X is a
scheme, andF is a finite type quasicoherent sheaf. Show that if U ⊂ X is a neigh-
borhood of p ∈ X and a1, . . . , an ∈ F (U) so that the images a1, . . . , an ∈ Fp

generate F |p (defined as Fp ⊗ κ(p), §4.3.7), then there is an affine neighborhood

Ravi Vakil. Foundations of Algebraic Geometry. Lecture Notes. Stanford University, 2015.
url: http://math.stanford.edu/~vakil/216blog/

http://math.stanford.edu/~vakil/216blog/


From \mathnormal to \mathXYZ

As discussed above, we have default mapping set up
▶ e.g., input char A65 → A1D434 maths font

When we switch to \mathXYZ (such as \mathit), we need
to undo this mapping so we can revert to

▶ e.g., input \mathbf{A65} → A65 bold maths font



Inside the NFSS
Briefly

\cs_set:Npn \use@mathgroup #1 #2
{
\mode_if_math:T
{
\math@bgroup

\cs_if_eq:cNF {M@\f@encoding} #1 {#1}
\__um_switchto_literal:
\mathgroup #2 \relax

\math@egroup
}

}



Downside to this approach
▶ All this symbol remapping doesn’t come for free.
▶ The literals mapping is probably not yet complete, but
it current reads:

\Umathcode 97=7\symoperators 97\scan_stop: \Umathcode 98=7\symoperators 98\sc
an_stop: \Umathcode 99=7\symoperators 99\scan_stop: \Umathcode 100=7\symoperato
rs 100\scan_stop: \Umathcode 101=7\symoperators 101\scan_stop: \Umathcode 102=7
\symoperators 102\scan_stop: \Umathcode 103=7\symoperators 103\scan_stop: \Umat
hcode 104=7\symoperators 104\scan_stop: \Umathcode 105=7\symoperators 105\scan_
stop: \Umathcode 106=7\symoperators 106\scan_stop: \Umathcode 107=7\symoperator
s 107\scan_stop: \Umathcode 108=7\symoperators 108\scan_stop: \Umathcode 109=7\
symoperators 109\scan_stop: \Umathcode 110=7\symoperators 110\scan_stop: \Umath
code 111=7\symoperators 111\scan_stop: \Umathcode 112=7\symoperators 112\scan_s
top: \Umathcode 113=7\symoperators 113\scan_stop: \Umathcode 114=7\symoperators
114\scan_stop: \Umathcode 115=7\symoperators 115\scan_stop: \Umathcode 116=7\s
ymoperators 116\scan_stop: \Umathcode 117=7\symoperators 117\scan_stop: \Umathc
ode 118=7\symoperators 118\scan_stop: \Umathcode 119=7\symoperators 119\scan_st
op: \Umathcode 120=7\symoperators 120\scan_stop: \Umathcode 121=7\symoperators
121\scan_stop: \Umathcode 122=7\symoperators 122\scan_stop: \Umathcode 104=7\sy
moperators 104\scan_stop: \Umathcode 119886=7\symoperators 119886\scan_stop: \U
mathcode 119887=7\symoperators 119887\scan_stop: \Umathcode 119888=7\symoperato
rs 119888\scan_stop: \Umathcode 119889=7\symoperators 119889\scan_stop: \Umathc
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EΠΑΝΑΛΗΨΗ – ΑΝΑΚΕΦΑΛΑΙΩΣΗ 2oυ KΕΦΑΛΑΙΟΥ
x Τριγωνομετρικοί αριθμοί γωνίας ω με �� ! ω ! 1���

Σε ορθοκανονικό σύστημα αξόνων Οxy, αν είναι ω = x
�

O],
και Μ(x, y) είναι ένα οποιοδήποτε σημείο της πλευράς Ο],
διαφορετικό από το Ο, τότε:

ρ   ΟΜ   !"x2 � \2  και ημω   
y
ρ � συνω   

x
ρ � εφω   

y
x .

Π.χ. αν Μ(1, 2), τότε ρ = !"12 + 22 = !"5,

ημω = 2
!"5  

= 2!"5 
5 ,    συνω =  

1
!"5  = !"5 

5 ,   εφω = 
2
1  = 2.

• Τα πρόσημα των τριγωνομετρικών αριθμών
 μιας γωνίας ω με 0� ! ω ! 180� φαίνονται
 στον διπλανό πίνακα:  

x Οι παραπληρωματικές γωνίες έχουν το ίδιο ημίτονο και αντίθετους τους άλλους
 τριγωνομετρικούς αριθμούς. Δηλαδή,
   ημ�1��� ° ω�   ημω   συν�1��� ° ω�   °συνω   εφ�1��� ° ω�   °εφω
 
 Π.χ. ημ160� = ημ20�    συν160� = –συν20�       εφ160� = –εφ20�

x Οι βασικές τριγωνομετρικές ταυτότητες είναι: 

ημ2ω � συν2ω   1  (Ισχύει για οποιαδήποτε γωνία ω).

εφω   
ημω
συνω     (Ισχύει για οποιαδήποτε γωνία ω με συνω " 0)

Π.χ.  ημ235� + συν235� = 1,  εφ35� =  
ημ35�
συν35�

x Σε κάθε τρίγωνο ΑΒΓ ισχύουν 

° Νόμος των ημιτόνων:    
α

ημΑ    
β

ημΒ    
γ

ημΓ  

° Νόμος των συνημιτόνων: α2   β2 � γ2 ° 2βγ συνΑ
            β2   γ2 � α2 ° 2γα συνΒ
            γ2   α2 � β2 ° 2αβ συνΓ
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ω  �� ��� 1���
ημω  + +

συνω  � °
εÆω  � °

Μ�[� \�

y

]

x
ω

ρ
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y
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(Thanks to Apostolos Syropoulis for the reference.)
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\[
\mathrm{ημ}(ω) = \frac{y}{ρ}

\]

But probably \mathrm should now be called \mathup!
(My friend Nino says ‘rm’ means remove; cf. GNU/Linux.)
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212 Chapter 5 III, Sampling, and Interpolation

Electron density distribution An important quantity to consider in crystallography is how the elec-
trons are distributed among the atoms in the crystal. This is usually referred to as the electron density
distribution of the crystal. We want to see how we might represent this as a function, and consider what
happens to the function in the course of an X-ray diffraction experiment.

Let’s take the one-dimensional case as an illustration; we’ll look at the (more realistic) higher dimensional
case later in the course. We view a one-dimensional crystal as an evenly spaced collection of atoms along
a line. In fact, for purposes of approximation, we suppose that an infinite number of them are strung out
along a line. If we describe the electron density distribution of a single atom by a function ρ(x) then the
electron density distribution of the crystal with spacing p is the periodic function

ρp(x) =
∞∑

k=−∞
ρ(x− kp) .

As our discussion of diffraction might indicate, the Fourier transform of ρp(x) is proportional to the
“scattered amplitude” of X-rays diffracted by the crystal. Thus we want to write ρp(x) in a form that’s
amenable to taking the Fourier transform. (Incidentally, it’s not unreasonable to suppose that ρ is rapidly
decreasing — the electron density of a single atom dies off as we move away from the atom.)

As we’ll see, it’s convenient to write the periodized density as a convolution with a sum of shifted δ’s:

ρp(x) =
∞∑

k=−∞
ρ(x− pk) =

∞∑

k=−∞
δ(x− kp) ∗ ρ(x) =

( ∞∑

k=−∞
δ(x− kp)

)
∗ ρ(x) .

Now introduce

IIIp(x) =
∞∑

k=−∞
δ(x− kp) ,

so that, simply,
ρp = IIIp ∗ ρ .

IIIp is the star of the show. Bracewell calls it the “shah function”, after the Cyrillic letter, and this has
caught on. It’s also referred to as the Dirac comb (with spacing p).

Using the convolution theorem, we have

Fρp = Fρ · F IIIp .

What is F IIIp? That’s a really interesting question.

5.2 The III Distribution

We want to develop the properties of IIIp, particularly its Fourier transform. In fact, we met this distribution
earlier, in Chapter 1. Rather, we met its Fourier transform — it’s the continuous buzz signal, as we’ll
discuss further, below.

As a “standard” we take the spacing p to be 1, so we sum over the integer points and define

III(x) =
∞∑

k=−∞
δ(x− k) or III =

∞∑

k=−∞
δk .

Brad Osgood. The Fourier Transform and its Applications. Lecture Notes. Stanford
University, 2008
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It follows that the class resq(c) ∈ H1(Qq, A[q](k/2)) is in the image of h1(D(k/2)/qD(k/2))
by the vertical map in the exact sequence analogous to the above. Since the map
from h1(D(k/2)) to h1(D(k/2)/qD(k/2)) is surjective, resq(c) lies in the image
of H1

f (Qq, Tq(k/2)). From this it follows that resq(γ) ∈ H1
f (Qq, Aq(k/2)), as de-

sired. !

Theorem 2.7 of [AS] is concerned with verifying local conditions in the case k = 2,
where f and g are associated with abelian varieties A and B. (Their theorem also
applies to abelian varieties over number fields.) Our restriction outlawing congru-
ences modulo q with cusp forms of lower level is analogous to theirs forbidding q
from dividing Tamagawa factors cA,l and cB,l. (In the case where A is an elliptic
curve with ordl(j(A)) < 0, consideration of a Tate parametrisation shows that if
q | cA,l, i.e., if q | ordl(j(A)), then it is possible that A[q] is unramified at l.)

In this paper we have encountered two technical problems which we dealt with
in quite similar ways:

(1) dealing with the q-part of cp for p | N ;
(2) proving local conditions at primes p | N , for an element of q-torsion.

If our only interest was in testing the Bloch-Kato conjecture at q, we could have
made these problems cancel out, as in Lemma 8.11 of [DFG1], by weakening the
local conditions. However, we have chosen not to do so, since we are also interested
in the Shafarevich-Tate group, and since the hypotheses we had to assume are not
particularly strong. Note that, since A[q] is irreducible, the q-part of X does not
depend on the choice of Tq.

7. Examples and Experiments

This section contains tables and numerical examples that illustrate the main
themes of this paper. In Section 7.1, we explain Table 1, which contains 16 exam-
ples of pairs f, g such that the strong Beilinson-Bloch conjecture and Theorem 6.1
together imply the existence of nontrivial elements of the Shafarevich-Tate group
of the motive attached to f . Section 7.2 outlines the higher-weight modular symbol
computations that were used in making Table 1. Section 7.3 discusses Table 2,
which summarizes the results of an extensive computation of conjectural orders of
Shafarevich-Tate groups for modular motives of low level and weight. Section 7.4
gives specific examples in which various hypotheses fail. Note that in §7 “modular
symbol” has a different meaning from in §5, being related to homology rather than
cohomology. For precise definitions see [SV].

7.1. Visible X Table 1. Table 1 on page 11 lists sixteen pairs of newforms f
and g (of equal weights and levels) along with at least one prime q such that there
is a prime q | q with f ≡ g (mod q). In each case, ords=k/2 L(g, k/2) ≥ 2 while
L(f, k/2) ̸= 0. The notation is as follows. The first column contains a label whose
structure is

[Level]k[Weight][GaloisOrbit]
This label determines a newform g =

∑
anqn, up to Galois conjugacy. For example,

127k4C denotes a newform in the third Galois orbit of newforms in S4(Γ0(127)).
The Galois orbits are ordered first by the degree of Q(. . . , an, . . .), then by the
sequence of absolute values |Tr(ap(g))| for p not dividing the level, with positive
trace being first in the event that the two absolute values are equal, and the first

Neil Watkins, William Dummigan, and Mark Stein. “Constructing elements in
Shafarevich-Tate groups of modular motives”. In: Number theory and algebraic geometry
303 (2003)
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ρ_p = \mathcyr{Ш}_p \ast ρ \qquad
\dot{\mathcyr{у}} = A(x,t)\mathcyr{у} +F(x,u)θ
\qquad y = mx+c

\]
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